Edinburgh Research Partnership in Engineering and Mathematics http://www.erp.ac.uk

Dynamic Spectrum Sharing for Cognitive Radio Networks

Zengmao Chen, Cheng-Xiang Wang, John S. Thompson, and Sergiy A. Vorobyov

Background and Motivations

> There is a severe imbalance between spectrum scarcity and spectrum underutilization.

5 (B) (B) (B)	17 11		
THERE -		C.201	-
1.894.8	-	ALC: NO.	PROPERTY.
			1.4.4.4.

-		 -	_
3			
-	-	 	
-			

Cognitive Radio (CR)

RPem

- Can sense and surrounding reason its thereby, dynamically environment. and autonomously adjust its operating parameters to coexist with the primary system in a nonintrusive manner.
- Has the potential to significantly improve the spectrum utilization.

Model, evaluate, manage and cancel the interference in CR networks

Interference Cancellation (IC) in CR **Networks**

IC Type	c techniques applicable Gray Space	to CR Networks Black Space	
IC at CR Receivers	Interference suppression • Cyclostationarity based • Transform based • Higher-order-statistics based	& cancellation: • Extract & cancel • Reconstruct & cancel Interference	
IC at CR Transmitters	Receiver beamformedium shaping share Predistortion filtering Spread spectrum Transmitter beamforming		

Nash Bargaining over MIMO Interference Channels (IFCs) $\max_{i} \prod_{i} (I_i(Q) - I_i^{NE})$

- > Nash bargaining (NB):
 - A cooperation scheme for s.t. $tr(\boldsymbol{Q}_i) \leq p_i$ secondary multiple-input $I_i(Q) > I_i^{NE}$ multiple-output (MIMO) users to maximize the ach product

- Characteristics of NB
 - Fairness of the NB solution

Metric Solution	Fairness	4
Nash bargaining	0.9830	the second second
Nash equilibrium	0.9923	
Kalai-Smorodinsky	0.9030	
Utilitarian	0.8960	
Proportional	0.8960	

Feasible NR set

$$\boldsymbol{\mathcal{Q}}_{i}^{NE} = \boldsymbol{U}_{i} (\boldsymbol{\mu}_{i} \boldsymbol{I} - \boldsymbol{D}_{i}^{-1})^{+} \boldsymbol{U}_{i}^{E}$$
$$\boldsymbol{\mathcal{Q}}_{i}^{NB} = \boldsymbol{\nabla}_{i} \boldsymbol{\Lambda} \boldsymbol{\nabla}_{i}^{H}$$

The signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) impacts on the existence of the NB solution

Uniqueness of the NB solution Sufficient condition: INR being sufficiently small

Summary & Future Work

- Inter-network interference: We have reviewed various Interference cancellation (IC) techniques applicable in CR networks.
- > Intra-network interference: We have investigated the MIMO IFCs from a gametheoretic prospective (Nash bargaining over MIMO IFCs).
- > Future work is to model interference in CR networks and optimise the spectrum sensing and access policies from a cross-layer perspective.

Related Publications

Journals

- [1] X. Hong, Z. Chen, C.-X. Wang, and S. A. Vorobyov, "Interference cancellation for cognitive radio networks", IEEE Veh. Technol. Mag., submitted.
- [2] Z. Chen, S. A. Vorobyov, C.-X. Wang, and J. Thompson, "Characterization of Nash bargaining over MIMO interference systems", IEEE Trans. Wireless Commun., to be submitted.

Conferences

i = 1, ..., L

Dresden, Germany, June 2009, accepted

