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Overview
Environmental noise, music, and acoustic reverberation often lead to 
unintelligibility in speech in applications such as mobile phones 
or hearing aids. Enhancement of the degraded noisy signal is 
an extremely important Engineering problem for many real world 
audio communication systems. Enhancement relies on prior in-
formation about the speech, noise, and room acoustics. As exact 
prior knowledge is often not available, we model belief about 
the system to find the most probable restored signal.

Applications
Speech processing
�Hearing aids, teleconferencing, speech 
recognition systems, handsfree telephones

Underwater acoustics & scene analysis
Target localization, tracking, 

identification, classification, detection

Military & security applications
Object guidance, air traffic control,  surveillance

Noise
Undesired signals: 
Background  music, 
other speakers, etc.
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Source signal
•	 Clean / desired signal
•	 �Speaker moving around: 

time-varying position

xt

Received signal

•	 �Combination of source 
and noise signals 

yt

yt = bT yt−1:t−P + xt + σwtwt

Distorted signal 
sample

Clean sample, to 
be estimated

•	 �Caused by signal reflections
•	 �Distorts signal leading to reduced 

audio quality and intelligibility
•	 Function of room acoustics
•	 Dependent on source position
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Enhancement of source signal
•	 Removes noise and reverberation from received signal
•	 Dereverberation: Estimate of the room acoustics is required
•	 Improve estimate of room acoustics using source location

Speech 
enhancement

Clean speech 
estimate

Estimate of location 
of source

Target tracking

Problem: Joint Enhancement & Tracking

Tracking of audio source
•	 Estimates source location
•	 ���Source signal estimate neces-

sary to identify true source from        
reflections and noise        

�Bayesian probabilistic inference allows us to introduce uncertainty in 
estimation methods of the unknown parameters and to update our 
belief in the estimates as new data becomes available.

Bayesian Blind Dereverberation

Speech Models
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Speech can be modeled by au-
toregressive (AR) processes 
due to their accurate captur-
ing of the short-term spectrum 
of speech. Time-varying AR 
(TVAR) parameters are used 

in order to capture the continually changing properties of the vocal tract. 
The TVAR parameters evolve according to a first-order Markov chain to 
allow for a flexible representation. Voice activity detectors distinguish be-
tween voiced and unvoiced speech sequences. 
For unvoiced speech the AR process is excited by turbulent noise, 
i.e., a white Gaussian noise se-
quence. 
The vibrations of the vocal 
chords occuring for voiced 
speech are represented by a 
glottal pulse excitation of the  AR process. Parallel formant synthesiz-
ers (PFSs) can be used to approximate the harmonic behavior of voiced 
speech. PFSs generate speech by means of several digital resonators.

�The distorting channel effects can be removed from the observed signal 
by analytically marginalizing the channel parameters.

As the channel parameters are usually unknown, they need to be es-
timated like all other unknown variables. Thus, an ensemble of Kalman 
filters for stochastically sampled channel parameters is run simultane-
ously to marginalize over all the hypothesized channels.

Marginalization of channel parameters
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with gain, kb,t, and residual covariance, σzt,b
,

kb,t =
1

σ2
zt,b

Σb,t−1ỹt−1 (45d)

σ2
zt,b

= σ2
zt

+ ỹt−1Σb,t−1ỹ
T
t−1 (45e)

and where,

ỹt = yt − cT αt|t−1 (46a)

ỹT
t−1 = yT

t−1 + cTΓt|t−1. (46b)

By comparison with the KF equations in eqn. (33), the parameters specifying the Gaussian

density of the channel coefficients, eqs. (45b) to (45e), are in therefore of the form of KF

recursions. A MAP estimate of the channel parameters is obtained by,

bMAP = arg max
b

p (b | y1:t, θ0:t) = arg max
b

N
(
b

∣∣ µb,t, Σb,t

)
= µb,t. (47)

5) Marginalization of channel parameters from the Kalman filter equations

Slightly rewriting eqn. (28), the channel parameters can be marginalized via,

p (x0:t | y1:t, θ0:t) = p (x0 | θ0)
∏

k∈T

p (xk | x0:k−1,y1:k, θ0:k) (48)

= p (x0 | θ0)
∏

k∈T

[ ∫
p (xt | y1:t, θ0:t,b) p (b | y1:t, θ0:t) db

]
(49)

p (x0:t | y1:t, θ0:t) = p (x0 | θ0)
∏

k∈T

[ ∫
p (xt | y1:t, θ0:t,b) p (b | y1:t, θ0:t) db

]
(50)

where p (b | y1:t, θ0:t) is given in eqn. (45), and p (xt | y1:t, θ0:t,b), is obtained from KF

equations in eqn. (33). Inserting eqn. (45a) with eqns. (45c) and (45c), and inserting eqn. (30)

with eqns. (33c) and (33d) into eqn. (49) as shown in Appendix B-B, the marginal posterior
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Tracking using a time-varying channel
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The source position is implicitly tracked as side-product of the chan-
nel parameter estimation by modelling the room impulse response as a 
function of the location of the source position relative to the sensor. The 
channel model is extended to the multi-sensor case.
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