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Compressed Sensing Overview
The Sparse Signal Model
Assume y is approximately sparse, i.e. y has 
many small elements.

Three dimensional example where y is an 
element from an lp ball.

Compressed Sensing: an MRI example
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The Challenge
Estimate the signal y from a few linear 
measurements.

Q1: How many measurements do we need?
Q2: How do we take good measurements?
Q3: How do we reconstruct the original signal? 

Wavelet Transform

The Image is sparse in the wavelet domain (top 
right). Measurements are taken in the Fourier 
domain (bottom left), but we would like to take as 
few measurements as possible (bottom right).
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New Algorithms: provably fast & good
Finding the best K-sparse estimate ŷ (i.e. such that ||x - Φ ŷ||2 is minimal) is NP hard.
We have developed a range of extremely simple new greedy algorithms including Iterated 
Hard Thresholding (IHT) which we can prove has:

Furthermore IHT can be extended to reconstruct model-based signal representations (see 
“Future directions” box).

Better models: structured 
representations
The K-Sparse signal model is a union of subspaces. We have generalized CS theory to an 
arbitrary union of subspaces. This enables us to incorporate different structured models, 
including:

• Redundant representations (analysis or synthesis)
• Simultaneous sparse representations (e.g. multi-channel source separation)
• Multi-resolution sparse representations (e.g. tree based wavelet models)

Classical compressed sensing shows that stable inverses exist when the number of 
samples (observation measurements), M satisfies:

M ≥ const. × K log (N/K)

where the original signal is N dimensional. 
For tree-restricted sparsity this reduces to:

M ≥ const. × K

Thus by restricting the number of subspaces  
we require many fewer samples. 

Compressed Sensing in SAR
Under-sampling in Synthetic Aperture Radar can 
provide reduced data rates (for transmission) or to allow 
the radar to be intermittently used in other modes 
(interrupted SAR)

Some applications
Compressed Sensing in dynamic MRI
We are currently exploring better signal models, 
sampling strategies and reconstruction algorithms 
to enable rapid acquisition of dynamic MRI 
sequences.
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Future directions
Model-based Compressed Sensing
Our work on IHT + structured sparsity have recently been used by
Rice University to perform Model-based Compressed Sensing. This 
enables, for example multi-resolution wavelet trees to be used to 
further reduce sub-sampling. We anticipate further advances in this 
direction.

Images from: Baranuik et al. “Model based Compressed Sensing”, 
2008.

Example of sparse coefficients restricted to 
form a tree. This significantly reduces the 
number of possible subspaces
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We observe x = Φy + ε, 
y approximately sparse, 
Φ is an M×N matrix, 
and ε is observation 
noise

• Near-optimal reconstruction & approximation 
performance when Φ has the restricted 
isometry property

• Bounded algorithmic complexity (number of 
iterations is proportional to logarithmic of 
SNR)

The Iterative Hard Thresholding (IHT)
algorithm

y[n+1] = HK (y[n] + ΦT(x - Φ y[n]

)) 

where HK is the operator keeping the largest K
elements. A modified version with an adaptive 
step-size further improves performance.

Comparison of sparse signal reconstruction 
with other state-of-the art techniques: L1
minimization and CoSAMP.

CoSaMP also has provably fast performance 
when using conjugate gradient updates in the 
inner loop. Here we show the performance for 
(a) 3 CG steps, (b) 6 CG steps, (c) 9 CG steps, 
and (d) full least squares.
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